3.3.30 \(\int \frac {(a+a \sin (c+d x))^4}{(e \cos (c+d x))^{9/2}} \, dx\) [230]

3.3.30.1 Optimal result
3.3.30.2 Mathematica [C] (verified)
3.3.30.3 Rubi [A] (verified)
3.3.30.4 Maple [B] (verified)
3.3.30.5 Fricas [C] (verification not implemented)
3.3.30.6 Sympy [F(-1)]
3.3.30.7 Maxima [F]
3.3.30.8 Giac [F]
3.3.30.9 Mupad [F(-1)]

3.3.30.1 Optimal result

Integrand size = 25, antiderivative size = 127 \[ \int \frac {(a+a \sin (c+d x))^4}{(e \cos (c+d x))^{9/2}} \, dx=\frac {10 a^4 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d e^4 \sqrt {e \cos (c+d x)}}+\frac {4 a^7 (e \cos (c+d x))^{5/2}}{7 d e^7 (a-a \sin (c+d x))^3}-\frac {20 a^8 \sqrt {e \cos (c+d x)}}{21 d e^5 \left (a^4-a^4 \sin (c+d x)\right )} \]

output
4/7*a^7*(e*cos(d*x+c))^(5/2)/d/e^7/(a-a*sin(d*x+c))^3+10/21*a^4*(cos(1/2*d 
*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2) 
)*cos(d*x+c)^(1/2)/d/e^4/(e*cos(d*x+c))^(1/2)-20/21*a^8*(e*cos(d*x+c))^(1/ 
2)/d/e^5/(a^4-a^4*sin(d*x+c))
 
3.3.30.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.06 (sec) , antiderivative size = 66, normalized size of antiderivative = 0.52 \[ \int \frac {(a+a \sin (c+d x))^4}{(e \cos (c+d x))^{9/2}} \, dx=\frac {8 \sqrt [4]{2} a^4 \operatorname {Hypergeometric2F1}\left (-\frac {7}{4},-\frac {5}{4},-\frac {3}{4},\frac {1}{2} (1-\sin (c+d x))\right ) (1+\sin (c+d x))^{7/4}}{7 d e (e \cos (c+d x))^{7/2}} \]

input
Integrate[(a + a*Sin[c + d*x])^4/(e*Cos[c + d*x])^(9/2),x]
 
output
(8*2^(1/4)*a^4*Hypergeometric2F1[-7/4, -5/4, -3/4, (1 - Sin[c + d*x])/2]*( 
1 + Sin[c + d*x])^(7/4))/(7*d*e*(e*Cos[c + d*x])^(7/2))
 
3.3.30.3 Rubi [A] (verified)

Time = 0.61 (sec) , antiderivative size = 138, normalized size of antiderivative = 1.09, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 3149, 3042, 3159, 3042, 3159, 3042, 3121, 3042, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sin (c+d x)+a)^4}{(e \cos (c+d x))^{9/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a \sin (c+d x)+a)^4}{(e \cos (c+d x))^{9/2}}dx\)

\(\Big \downarrow \) 3149

\(\displaystyle \frac {a^8 \int \frac {(e \cos (c+d x))^{7/2}}{(a-a \sin (c+d x))^4}dx}{e^8}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a^8 \int \frac {(e \cos (c+d x))^{7/2}}{(a-a \sin (c+d x))^4}dx}{e^8}\)

\(\Big \downarrow \) 3159

\(\displaystyle \frac {a^8 \left (\frac {4 e (e \cos (c+d x))^{5/2}}{7 a d (a-a \sin (c+d x))^3}-\frac {5 e^2 \int \frac {(e \cos (c+d x))^{3/2}}{(a-a \sin (c+d x))^2}dx}{7 a^2}\right )}{e^8}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a^8 \left (\frac {4 e (e \cos (c+d x))^{5/2}}{7 a d (a-a \sin (c+d x))^3}-\frac {5 e^2 \int \frac {(e \cos (c+d x))^{3/2}}{(a-a \sin (c+d x))^2}dx}{7 a^2}\right )}{e^8}\)

\(\Big \downarrow \) 3159

\(\displaystyle \frac {a^8 \left (\frac {4 e (e \cos (c+d x))^{5/2}}{7 a d (a-a \sin (c+d x))^3}-\frac {5 e^2 \left (\frac {4 e \sqrt {e \cos (c+d x)}}{3 d \left (a^2-a^2 \sin (c+d x)\right )}-\frac {e^2 \int \frac {1}{\sqrt {e \cos (c+d x)}}dx}{3 a^2}\right )}{7 a^2}\right )}{e^8}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a^8 \left (\frac {4 e (e \cos (c+d x))^{5/2}}{7 a d (a-a \sin (c+d x))^3}-\frac {5 e^2 \left (\frac {4 e \sqrt {e \cos (c+d x)}}{3 d \left (a^2-a^2 \sin (c+d x)\right )}-\frac {e^2 \int \frac {1}{\sqrt {e \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 a^2}\right )}{7 a^2}\right )}{e^8}\)

\(\Big \downarrow \) 3121

\(\displaystyle \frac {a^8 \left (\frac {4 e (e \cos (c+d x))^{5/2}}{7 a d (a-a \sin (c+d x))^3}-\frac {5 e^2 \left (\frac {4 e \sqrt {e \cos (c+d x)}}{3 d \left (a^2-a^2 \sin (c+d x)\right )}-\frac {e^2 \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{3 a^2 \sqrt {e \cos (c+d x)}}\right )}{7 a^2}\right )}{e^8}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a^8 \left (\frac {4 e (e \cos (c+d x))^{5/2}}{7 a d (a-a \sin (c+d x))^3}-\frac {5 e^2 \left (\frac {4 e \sqrt {e \cos (c+d x)}}{3 d \left (a^2-a^2 \sin (c+d x)\right )}-\frac {e^2 \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 a^2 \sqrt {e \cos (c+d x)}}\right )}{7 a^2}\right )}{e^8}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {a^8 \left (\frac {4 e (e \cos (c+d x))^{5/2}}{7 a d (a-a \sin (c+d x))^3}-\frac {5 e^2 \left (\frac {4 e \sqrt {e \cos (c+d x)}}{3 d \left (a^2-a^2 \sin (c+d x)\right )}-\frac {2 e^2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a^2 d \sqrt {e \cos (c+d x)}}\right )}{7 a^2}\right )}{e^8}\)

input
Int[(a + a*Sin[c + d*x])^4/(e*Cos[c + d*x])^(9/2),x]
 
output
(a^8*((4*e*(e*Cos[c + d*x])^(5/2))/(7*a*d*(a - a*Sin[c + d*x])^3) - (5*e^2 
*((-2*e^2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2])/(3*a^2*d*Sqrt[e*Co 
s[c + d*x]]) + (4*e*Sqrt[e*Cos[c + d*x]])/(3*d*(a^2 - a^2*Sin[c + d*x])))) 
/(7*a^2)))/e^8
 

3.3.30.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 

rule 3149
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_), x_Symbol] :> Simp[(a/g)^(2*m)   Int[(g*Cos[e + f*x])^(2*m + p)/( 
a - b*Sin[e + f*x])^m, x], x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2 
, 0] && IntegerQ[m] && LtQ[p, -1] && GeQ[2*m + p, 0]
 

rule 3159
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_), x_Symbol] :> Simp[2*g*(g*Cos[e + f*x])^(p - 1)*((a + b*Sin[e + f 
*x])^(m + 1)/(b*f*(2*m + p + 1))), x] + Simp[g^2*((p - 1)/(b^2*(2*m + p + 1 
)))   Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 2), x], x] /; 
FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0] && LeQ[m, -2] && GtQ[p, 1] & 
& NeQ[2*m + p + 1, 0] &&  !ILtQ[m + p + 1, 0] && IntegersQ[2*m, 2*p]
 
3.3.30.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(400\) vs. \(2(139)=278\).

Time = 8.72 (sec) , antiderivative size = 401, normalized size of antiderivative = 3.16

method result size
default \(\frac {2 \left (-40 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+128 \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+60 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-128 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-30 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+112 \left (\sin ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-16 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-112 \left (\sin ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+4 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a^{4}}{21 \left (8 \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-12 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) e +e}\, e^{4} d}\) \(401\)
parts \(\text {Expression too large to display}\) \(1260\)

input
int((a+a*sin(d*x+c))^4/(e*cos(d*x+c))^(9/2),x,method=_RETURNVERBOSE)
 
output
2/21/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^ 
2-1)/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*e+e)^(1/2)/e^4*(-40*(sin( 
1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d 
*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^6+128*sin(1/2*d*x+1/2*c)^6*cos(1/2 
*d*x+1/2*c)+60*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2 
^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^4-128*sin(1/2* 
d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-30*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF( 
cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1 
/2*c)^2+112*sin(1/2*d*x+1/2*c)^5-16*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c 
)+5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Elliptic 
F(cos(1/2*d*x+1/2*c),2^(1/2))-112*sin(1/2*d*x+1/2*c)^3+4*sin(1/2*d*x+1/2*c 
))*a^4/d
 
3.3.30.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 190, normalized size of antiderivative = 1.50 \[ \int \frac {(a+a \sin (c+d x))^4}{(e \cos (c+d x))^{9/2}} \, dx=-\frac {5 \, {\left (i \, \sqrt {2} a^{4} \cos \left (d x + c\right )^{2} + 2 i \, \sqrt {2} a^{4} \sin \left (d x + c\right ) - 2 i \, \sqrt {2} a^{4}\right )} \sqrt {e} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 \, {\left (-i \, \sqrt {2} a^{4} \cos \left (d x + c\right )^{2} - 2 i \, \sqrt {2} a^{4} \sin \left (d x + c\right ) + 2 i \, \sqrt {2} a^{4}\right )} \sqrt {e} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 8 \, {\left (4 \, a^{4} \sin \left (d x + c\right ) - a^{4}\right )} \sqrt {e \cos \left (d x + c\right )}}{21 \, {\left (d e^{5} \cos \left (d x + c\right )^{2} + 2 \, d e^{5} \sin \left (d x + c\right ) - 2 \, d e^{5}\right )}} \]

input
integrate((a+a*sin(d*x+c))^4/(e*cos(d*x+c))^(9/2),x, algorithm="fricas")
 
output
-1/21*(5*(I*sqrt(2)*a^4*cos(d*x + c)^2 + 2*I*sqrt(2)*a^4*sin(d*x + c) - 2* 
I*sqrt(2)*a^4)*sqrt(e)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x 
 + c)) + 5*(-I*sqrt(2)*a^4*cos(d*x + c)^2 - 2*I*sqrt(2)*a^4*sin(d*x + c) + 
 2*I*sqrt(2)*a^4)*sqrt(e)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin( 
d*x + c)) + 8*(4*a^4*sin(d*x + c) - a^4)*sqrt(e*cos(d*x + c)))/(d*e^5*cos( 
d*x + c)^2 + 2*d*e^5*sin(d*x + c) - 2*d*e^5)
 
3.3.30.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \sin (c+d x))^4}{(e \cos (c+d x))^{9/2}} \, dx=\text {Timed out} \]

input
integrate((a+a*sin(d*x+c))**4/(e*cos(d*x+c))**(9/2),x)
 
output
Timed out
 
3.3.30.7 Maxima [F]

\[ \int \frac {(a+a \sin (c+d x))^4}{(e \cos (c+d x))^{9/2}} \, dx=\int { \frac {{\left (a \sin \left (d x + c\right ) + a\right )}^{4}}{\left (e \cos \left (d x + c\right )\right )^{\frac {9}{2}}} \,d x } \]

input
integrate((a+a*sin(d*x+c))^4/(e*cos(d*x+c))^(9/2),x, algorithm="maxima")
 
output
integrate((a*sin(d*x + c) + a)^4/(e*cos(d*x + c))^(9/2), x)
 
3.3.30.8 Giac [F]

\[ \int \frac {(a+a \sin (c+d x))^4}{(e \cos (c+d x))^{9/2}} \, dx=\int { \frac {{\left (a \sin \left (d x + c\right ) + a\right )}^{4}}{\left (e \cos \left (d x + c\right )\right )^{\frac {9}{2}}} \,d x } \]

input
integrate((a+a*sin(d*x+c))^4/(e*cos(d*x+c))^(9/2),x, algorithm="giac")
 
output
integrate((a*sin(d*x + c) + a)^4/(e*cos(d*x + c))^(9/2), x)
 
3.3.30.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sin (c+d x))^4}{(e \cos (c+d x))^{9/2}} \, dx=\int \frac {{\left (a+a\,\sin \left (c+d\,x\right )\right )}^4}{{\left (e\,\cos \left (c+d\,x\right )\right )}^{9/2}} \,d x \]

input
int((a + a*sin(c + d*x))^4/(e*cos(c + d*x))^(9/2),x)
 
output
int((a + a*sin(c + d*x))^4/(e*cos(c + d*x))^(9/2), x)